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INTRODUCTION TO VOLUME II

This volume consists of a series of appendices whose contents could
not be included in the body of the report without breaking the continuity.
The appendices deacribe topics that were studied during the course of the
current contract but are only tangentially related to the theme of Volume
I, Several references were made in Volume I to appendices in this volume
for the details of specific methods.

The notation introduced in each appendix applies only to that appendix
unless otherwise noted,
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4 APPENDIX A
f
{

THE METHOD OF ITERATIVE GENERALIZED LEAST SQUARE

TT® e T 5 e P A ¢ T ST TR S ORI,

Ty

% ; In Prony's method we have the difference equation f

i ' g s I, =0 K=0,1 y-1 (A.1)

- » ] 9% s ey . :

E peo P P ;

! Y = M-N ;

) This 18 usually solved as an inhomogeneous equation ?

N-1 :

2 ap Ip*'K - -IN".'K ’ K - O,L,QJQ,Y-I . (AlZ) ;

p=0 :

) where ay Was set to one. %

;

However we do not know the IK's exactly. The measurements of the IK'a are YK 1

. as ;

3 3

N ) 3

Te=Igte (A.3)

A ;

. where e is the error in the kth sample. i

; Hence, E
g

3 a Y - a e . (AlA) '

| | ps0 P PR Sy e pHK . ]

s |

E Rewriting the above gives i

E Nil % |

o Y = -Y + e .

} , \ pag P PR MK S P oK (A.5)

N
Letting W = 6. e (A.6)
% pzs p K :
{
A-1
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ﬁ then
]
. N-1
i - + . A, 3
- 2 9y Youg = g * Wy 4.7
i p=0
;|
T The WK are the residuals but from (A.€) the residuals are correlated and a :
3 j least squares solution to (4.6) will give biased estimates. ?
f. When we use least squares t¢ minimize che residuals by '
2 B
L 3 Y 2 {
s 2 WS =0, me0,1,...,N-1 (A.8) g
5 4 m Kr0 »
';;.': ; g
;. ve obtain the final expression fg
e i 2
- gil Yg} y=1 1
-4 a > X Y - . Y Y ' s b
4'3 p-o p K-O p+K m‘K F.-O N+K Ws » m-o; L) )N L . (A. 9) . ;i
z |
%_1 We will get biased estimates for the ap. 3
L |
%.i One way to correct this is to use a method known as iterative
§ i generalized least squares. Rewrite (A.7) as
?
!

N

z a Y - W ’ K'O,l,‘-.,Y-l . (A.S) 3
pmo P PR K ' :
Now define new notation for the sake of convenience. First introduce the shift 3
; operator q defined so that i
‘ 1
4 ]
; i
' ¥y = fre !
? ' 2wt ' (4-9)
A i ™ g2 g
The polynomial operator A(q) is defined as :

L m
AGQ) = 3 a9 . (A.10) ;
mw0 ;
!
A-2 ,J

:
h !
£ _'l".c-l B S NP SO

e e e
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% Now (A.8) can be written as
3.Y A(q) YK - WK , let a = a . (A.11)
g In matrix form (A.8) is
Eo
5 i '
y} - [~ - ey -
%‘: 4y % o
| Y, oY, 1 3 _ Wy
%?I ) h 3% % ¥
RITREREY . R L]
and (A.1l1) is
) ~ L .
0 1 2
q Yo q YO q Yo ao Wo
0 1 2
eY 9Y Y| 19 W,
’ -
0 1
3 R A A "
) 0 1 |
= v, oy, q2Y3 W, .
| — - b - L’ —
b )

Now let us operate on WK with the polynomial filter

B(q) Wy = ng (A.12)

to give n_ which is an uncorrelated noise sequence (random variables) so that

K

Blinalacad s - Labl Dbl

B(q) A(q) YK = ng

Let A commute with B so that

A(q) B(q) Y, = e (A.13)
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and define

Y, =B ¥, (A.14)

so that

(A.15)

A(q) YK =0, .

Now equation (A.l5) has uncorrelated residuals and hence the solution should

converge to unbiased estimates.

The iterative procedure is therefore as follows:

1. Solve equation (A.ll) using the normal least squares procedure.
This gives an estimate of A(q) which can be thought of as the
a's of (A.8). Call that estimate A(q).

2. Substitute A(q) into (A.1ll) to produce an estimate of the
residuals wK.

3. Use WK in (A.12) to make a least squares estimate of B(q).

4, Calculate iK in (A.14).

5. Use the ¥  to make a new least squares estimate Rx(q).

K
6. Continue this procedure until

Y=l :
> wxz no longer decreases with the next iteratiom.
p=0

The question now is:

How does one obtain B(q) of step 3 above?

Assume we have used the least squares process once to find the coefficients

A~

N S

[N

e Pt

et Bl e e

e e e, o .




' Next calculate the ¥ residuals W _ as

L TR Sy

! K

@.7 a Y = W » K'O,l,.o.,Y'l .

guo P PYKK
: ! The rasults of steps 1 and 2 above gives a y dimensional vector of the re=-
. siduals W.

X

Calculate the autovariance function of the WK by
.‘1 ' r(u) - -2&(“0—1)1 ’ u'O.l,..-.Y-l

R R

G o

?, where

| (u) = & Yiu W, =) W ) 0,1 1

R c(u) == W, - .- y UBQ,l,ee0yy™

i ' LT 1 L }

x

2 ‘ and

1Y - 1

¢ | We= W .

¢ f ’

“} Hence the autocovariance function r(u) is defined

» Y=u _ |

N 12;1 Wy = WY Wy =9 ;

i‘ ’ I‘(u) = Y 2 » }'-O.l,.u,Y-l . K

- W, =W |
PR !

: |

: We now have a vector R, vy long. :

: J :

i ‘

' We want to test this R vector for whiteness of the residuals W. !

The standard deviation of a singla autocovariance function estimute is

1

: and

A=5
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The 95% confidence limits for a single autoccvariauce sample are

(u) +=2— 1.96 .
r(u t =

Y

Now supposgedly if 95% of the samples r(u) are less than }é;ﬁ then
we lhiave 952 confidence that the noise is white.

T TR T T T AT I E s
i e

i If the r(u) flunks *he whiteness test which will happen the first few times gﬁ
i, we iterate we must chen go back and whiten the residuals WK. L
‘ From Cquation (A.lZ2) we want %
: g 3
4 E
ﬁ , B(q) WK =, . 3
:, Remambering that B(q) = > b _q , :
b -, O ‘ !
. m=" 2
nt ]
; g = fr1 “
; kS
: and the n, are white random deviates.-
B ;
! 1
b N Thus we have a matrix equation of the form Wb = n, ;
y | :
| 1
i As an example, assume L = 2 and K = 3, Then we get g
| 0 2 2. . C ;
i 1Wy aWy  aW, % %o i
{
1 G
@iy A a¥ b o1 !
r - a
) 0
E A A ) 8,
2l 0 .
rh Lq W3 qlw3 azh3 i n,

;
,
E&é‘q-ﬁ.&na-.ﬂu‘:;__..;;.;.u. s e s 2 e gl o
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g

or

Solving Wb = n for the bn by using least squares gives

WIWb - WTn

or
-1
ba (WW) Wa .

Therefore the new YK previously defined as

-~

YK = B(q) YK

can be written as

-~

L et M D e e s e o B e S

e s p AT
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APPENDIX B
EFFECT OF INCREASING MODEL ORDER IN PRONY'S METHOD

A study of the 2ffect of increasing model order in Prony's method
has been made and the results ave presented here along with aome preliminary
conclusions. 1In past investigations of Prony's method it has beeu noted
that increasing the mod2l order above the known order of the waveform
improves Prony's method's ability to estimate accurately the true poles.
Although the accuracy of the pole estimates is improved, a side effecc
of this procedura is the problem of distinguishing between true poles
and those poles that simply fit to the noise and have no relation to the
information that is to be extracted from the wavefoim.

In tkis study we relate the inaccuracy or bias of the parameter
estimates to the amplitude of the residuals of the least=square Prony
procedure, We assume that the inhomogenous solution (defined in Volume
I, Section 2) is uged to find a parameter vector. The term "residuals"
is identical to "equation error'". In this appendix, N is the number of
poles modeled and M is the number of samples. When the residuals are
zero the least-squares Prony's method either has reduced to curve-fitting
Prony's method (M=2N) sr is processing a noise-free waveform at the proper
model order. 1In this case, the pole estimates are quite accurate and are
free of bias. Conversely the bias in Prony's method is directly related
to the magnitude of -2 residuals.

Tables B.1l through B.9 display the effect of increasing model order
at three different noise levels. %% is the standard deviation of the
noise. % is the average standard deviation of the residuals over ten
Monte Carlo runs. Each table shows the true parameter values in the first
column, the average parameter values over ten Mone Carlo runs, and the
variance of each parameter in the third column. Fcr all nine cases the

time window size is kept constant. Thus, M = 100 and AT = 0.13 seconds.




-

The three pole pairs shown under the average column were obtained by

' searching all N poles to find the pairs that were closest to the true
i

i % poles in valua. In general, of the extra poles not reported here, N-6,

have residues two orders of magnitude below those of the true poles.

From the results of Tables B.l through B.9, the following observations
can be made:

1. Prony's method seems to guarantee good results if %R < Iy
2. 0p ¢ 0y seems to occur when 4N > M, ﬁ

—
C P

That good results begin at Op = 9y ig not surprising. In this case one
would expect that the residuals are beginning to approximata the noise and
that the '"modeled" waveform approaches the uncorrupted waveform, But the
observation that GR - GN approximately when 4N = M has no obvious explan= '5
ation. This observation would obviously not hold true if we were to apply A
Prony's method to a noise-fcee waveform. In this case, the residuals

e

would drop to zero as soon as the model order reached or exceeded the order 3
of the waveform. We might surmise Chen that thir occurrance at 4N = M g
is attributable to the nature of the uncorrelated noise. i

There is no simple explanation for improved accuracy at higher
orders. At least two factors seem to be involved:

T ST T O g

1, Increasing the length of the parametar vector (by increasing !
the order) is an effective treatment for the dense sampling
problem (which is described in Volume I, Section 3 of this 1
report. )

e AT T

Making the data matrix more nearly square must reduca the

A T e
N
-

|
magnitude of the residuals. Smaller residuals implies smaller 2
bias in the parameters.

o
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Table 3.1. b_&odal order study Mw100, N=12, oN-.lOO,
OR-.IBOB-
TRUE AVERAGE %

©8,200000E<02 “=8,812308F=01"—"7;5L6325E<03"
*8¢200000E=02 <=6,812908E=01 7,546325E8=03 REAL PARTS
“1o470000E-01 =8,5420288=01 5,821274E=03 OF POLES
“1,470000E=01 ‘=8, 8420280133821 274E=03
“1,880000E=01 =3,329216€=01 2,371370E=03
=1.880000E=-01 =3,3292168=01 2,371 370E=03
~9y260000ES0L Vs e
«9,260000E=01 0, 0o IMAG, PARTS
2,874000E+00 2, 341L078E+00 3,2397368-03 OF POLES
S2.87L000E4007 <2, SLL0PSEFO0 T L 2NN YYBESLT

Ge835000E¢00 Ly BULLILLIEIOD 8. 0LTLOSE=0S
=be835000E400 ~ueBULLILLESOD 6. 0476 88E=04
“14000700€+00° ~"1,109338E+00 7 B 09LIIE=DY

1.000000E+400 1,109395%+00 7,503193E=02 MAGNITUDES

1,000000E+00 1,1443788+00 1,3%1987E=02 OF RESIDUES
“13000000E¥ 00 L, L UL3PAEF 0T 1o INIYNTEST2

1,000000E+00 1,1899038+400 S.474729E=03

1,000000E+00 1,189903E+00 6.4747?29E=03

0 T T T W 9L U B LS R 0 7T S2E Y

0. be 19111 E=~15 be 0776 92E-28 RADIAN PHASE

O 1.3507967E=04 1,508953E=02 OF RESIDUES

0™ TS BOTS TES L L SYNITIE= 02

0, 1, 701596801 S.478887E=03

0. 14701896801  5,L78887E-03
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Table B.2.

R" 124,

TRVE ~ AVERAGE il
“8,200000E=02 <=9,063%508<02 6,905491E=05
«8,200000E=02 =9,0695508=02 6,905491E=05
©leb70000E=0L =1,871783E-01 _ 1.08318%5E=0%
=1o470000E=01 <=1.%71783E=01 1,083155E<04
“1,880000E=01 <=$.951837E=01 1,278873E~04
«10880000E=01 =1¢951637€=01 1.273673E-04
TR ZR0000E=TL" 9, 289997&=01 3.687123E-085
~9,260000E=01 =9,289997E=01 3.,557123E~03
2087LO0OE400 _ 2,883251£400  1.01104kE=0%
2.87L000E+00 =2, 88325CE+ T 1. 0Li0ULE=-OW
Le83%000E400  LeBWO231E+00 L.176039E-04
“4o835000E¢00 =l,84O29LEC00  1,178039E~04
1,000000E400 "1, 027859E¢00 2,037443€E=03
1,000000F¢00 1,027839E+00 2,037443E=03
. 100000Q0E¢00. _ 1,03686578+0Q __ 221991089€=03
g 1000000€+00 1. 036437E+00 2,199189E-03
r 1,000000E+00 1.,018028£¢00 1,059788E=-03
: .1000000E+00 _ 1,018026E2400  1,0397808E=03
; e T T TS 2300938502 9.6202936-0%
0 1,2304938=02 9,0620293E-04
Oe, ______._,-.-1-92077§..Q!...ig!&&!lli:&i
? B 1.928¥r8¢- 2.042011E-03
0. -s.szaszzz-ux 2.024303E-03
; Do . 8+328322E-03  2,024303E-03
- _
i -
%
I

Modol order study M=100, N=20, oy . 100,

REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

MAGNITUDES
OF RESIDUES

RADIAN PHASE
OF RESIDUES

o it oo O e
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! Table B.3. Model order study M=100, N=36, o.=.100,
; ER-.0678.
[
b
=
i TRUE ~~ AVERAGE =@ .. .-
A «8,200000E<02 <8,1691788<02 3,058657E=03 REAL PARTS
' ©8,200000E=02 <«8,163178€=02 3.056657E-08 oF TOLES
©1ob70000E=01 =1,4838388=02 _ 1,172273E=04,
©1,470000E=01 =1, u835388=01" 1,172273E=04
“1,8800008=01 =1,842590E=01 %.,8681397E=04
=1,6800006=-01  =1,8423908=01  1:864397E=0%
"9, 26000008<01 9, 266LB0E=01 2,394936L~05
«9,260000F=01 <=9,2664L808=01 2,394938E=08 IMAG. PARTS
2487LOCOE+DD 2, 874836E+00  5.301869E=03 OF POLES
e2,87L000E+00 =2, 87L e RSO0 B, 3018¢F¢E<0Y
“e835000E¢00 L, 838128E400 4,450038E<03
“%,835000E+00 =4a 8361288400 4. 450036E-08
{ 1,0000008400 9,935 0788=01 1.325078E=03
4 1,000000E¢00 9,931078E=01 1,3285073E=03 MAGNITUDES
.14000000E400___ 1, 0437208+ 833803 OF RESIDUES
; 1,000000E400 1, 01372GE+00 e119833E6-03
' 1,000000E¢00 9,891063€=01 8,275759E=03
E . 140000008400 9.831053€=01 6,2767%9£-03
]
L
;
E B DO T SN, BET TR =03 8.593889E-04
? 0. . 3.563147E=03 a.ssssse:—ou RADIAN PHASE
B R 1) ““’3’351%5_14.;_ §=03 OF RESIDUES
r ' 0, <1, 448358¢= 1.790228C=-03
: 0, 1, 402673E=02 7,134540E=00
0. 100020738202  7.134840E=0k
2
-
;
B=5
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Thble B.4, Model order study M=100, Nm=8, oN-.OOIOO.

dp=+007098.
TRUE | AVERAGE &
SR RUOUYTE=UL™ <4, FRBVEBH=UT 8. 4719 T8E-TY

=8,2000008-02 <=bs?480258=014 6.871508E=03
=1,470000E<01 <3,237075E=01  1,154383€-03
1 h7000UT=0T =Y 23P0VSE=-0T 1. .18uw30SE=0Y
©1,880000E~01 =~1,994999E=01 2,8L4857E=05
=1,880000E-01 <«1,994933E=01 2, 614687E=03

9.2¢00008-04 8,950303€&=01 8o 7043 12E=0%
=9,260000E-08 -8.950305E&~04 8¢704512E~00

874L000E+0 1 87639480 =0k
- zI .L‘sf"w"o u"so""oog—-i"ib"%ﬁ"z. YOI IR z'd. s'n'f%"';"'a E=0%

e 8350008400 4o OL3261E+00  3.269888E-08
~4e 8380008400 <k, U3261E+00 3, 889888E-03

TOUaUO0E+ U0 1. 737 INOE+U0 . G LIAYUBE=1TY
1,000000E+00 L.737495K+400 ° 3.444386E=-03
_1.000000E¢00 1, 223820&+00 1.681720E=03
1,000000€+00 9. 0283708=014 4o 5350080E~ut4
1.000000E8+00 9.,02837 0B=01  4.5350030E-04

0 ~G 122003 T=0T T . Z3NETRESUY
0. ~2,0228038-01  7.235554E-03
O 2,2983308=04 3,769 24E=03

e =2, &9 - ’ .
% A 1.280895E=04  2.435785K-03
0 =1,280894E-01 2,4837458-08

B~6

REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

MAGNITUDES
OF RESIDUES

RADIAN PHASE
OF RESIDUES




Table B.5. Wodcl order study Mm100, N=12, oN" 00100,

) .00300

- )
3 |
5 2

te | TRUE AVERAGE ol

3! =8,200000E=02 =8, 334730E-02 3,819838E<05

fq <8,200000E=02 <=8,334780E=02 3.3L9838E=08 REAL PARTS

ey =1.470000E=00  =1,0820h5E=01 _ 3.307556L=03. OF POLES J
ﬁ' “1o470000E=01 <1,482005E=01 3,307558E=-0% ]
b 1 ~1,880000E=01 =1,879587E<01 1,855490E-07
.z. , 23,880000K=04  -1.0879%078=01 _1,0835490€=07

g | ' ‘

é | 9.260000E=01 9, 263227E=01  3,084208E~06 {
I =9.2800008=01 ~9,283227E=01 3.osuznaa-aa IMAG. PARTS _

o ppMupa fuabp b o

! be835000E«00 Le83504L3E+00 8, 7!7051!-07
- be 8350008400 ~4,8350638+400 8,7570518=07

o ) 1,0000008¢00  1.,0084LLE+00 Q,224408L~05
1.000000E¢00 1.00844LLE+Q0 9.224L108E~0} MAGNITUDES
—Le000000ES0Q 1, AQXASIESDN 4,73 8098EC=D% OF RESIDUES
1.000000!{ 0o 1, 003853LE+00 be?18098E=05
1.000000L+00 9. 9963178-04 be084LOIOE=DS

. 2N00000E+00 9 ILPE=04 Lo APLAINE=05_
0 -1.11:u:;:-g§ :.gt::zsz-di'
0s 1,11061 7€~ «015323E-08 RADIAN PHASE
| - 82 180221K=0b6 _4,0663478-08
r ! P =8, 1802708=06  4o088317E-gy  OF RESIDUES
: l 0e 1,8591538=03 9411 3744E=08 |
é L =12 8394358=03 9,41 374AR=-0R }

B-7

[}
)
A
X s . I
j seen st s Epos . Lncna ’ s
B T




P!
E 1
;
L
14
!

Py T T T LAY TR

v e gy tmi s e e e prgmre
o - TR

b v

Table B.6. Model order study M=100, N=20, oN-.OOI.

aR-.001246.

TRUE AVERAGE jﬁi
«83,2000008=-02 ~=8,1998385¢E=~02 6.959435E-09
«8,200000E=02 ~8,1998388E~02 6.955L3IBE~-03
-1.“1}000!-01 =1, 47043558-01 1,0346647E=08
=1,4700008=01 =1,0670155€-04 1.3346478=08
©1,8800008~0L ~=1,830358E-01 1.121223E-08

=4,9080000F=03 =1,08803338=-02 .. %:40%223E=03

9.260000E=0L  9,280079€=01 3.504264E=03
«9,2600008=01 =9,26800738=04 3.504264E=03
2826004 s A36082E=-03
“2.874Q00E+00 =2,87402584¢00 9,536052E=03
We83S000E+00 Lo B3499LEF00 . 1.374833E=08
™ & -l [) ’!!!i!‘m‘ ’m:u
“1{.000000E+07 9,999509E=01 2.130885£=07
1,000000E¢00 9.,999909E-01  2,130885E=07
_1,000000£¢+00 + -
1.ouonon:»oo"“%f%%%%t%i:%%"‘%f%%%%&fﬁT%%
1,000000E+00 1, 00008BE+00 9.094737E=08
1,000000E+00 1,000063£+00  9.094737E=08
T ol B OIYTLE-UE S USBLILESTT
[+ 1Y Lo b0L502E8-08 9:.035431E-«08
-[l - 7 - a{1?
0, 8, 973250E=05 2, 004572£=07
0, “2,9039L3E<085 2.259596L~07
i1 20903933805  2,239896E-47
B=8

REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

MAGNITUDES
OF RESIDUES

RADIAN PHASE
OF RESIDUES
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Table B.7. Model order study M=100, N=8, cN-.OIOO,

OR-.°394.

TRUE AVERAGE o2
=8,200000E=02 ~4,8169%4E~01 Ge3L3874E=03
«8,200000E=02 «=4,81694LE=01  4¢313874E=03
=14470000F=01 =4,331043€=04  1.533214E=03
=1,470000E-01 ~4,931013E-01 1.633214E=~03
=1,8800008-01 =2,8035458-01 4, 5187 06E~05

9.2600008=-01 O . 0,
«9,2600008=01 0- 0o
_2e87L000Ee ¢ -
=2,874L000E¢00 =2, 4LLB75E+00 = 5,252500E=04

%e83S000E+00 4, 8209876400 1,599293E=0%
-4, 835000E+00 =4,820057E+00  1,699293E-0%

1,0000005¢00  8,254603E-01 . 2,930682E~02
1,000000E+00  8,254603E=01 - 2,930682E-02
1,000000E+00  1,15L0888+00 3,8558307E=-03
“1,0000008400 1,150058E¢00 3,568307E-03

140000005400  1,112%50LE8+400 4o 643365E<03

1,0000005¢00  1,112%504E+00 4. B433865E~03

o T & UOLI3NE-18  E.3986341E-28

Ge 20991933845  6,536341E-28

0y 1,625083¢E-0 s 729888E-03

B =1,5250838-01  2,729888E~03

0. ~1,0754%3E=01  9,082337E~0%

Qe 40751438204  9,082337E-0%

B«9

REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

MAGNITUDES
OF RESIDUES

RADIAN PHASE
OF RESIDUES
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- 1412261 08E-04

=02

B 1.uzeosne+nnmv

1.70503BE‘UZ

1,0000002+00°

_1,000000E¢00 ~ 1,211075E8+00 °" 2,967772E=03
1.000000E+00 1,2110735E+00 2.367772E=-03
1.000000E+00 9., 755313€E-01 be130653E=04
1, 000000E+00

9, 755313E=-01

LD
0. «2.712848E~-03
8. 7:_30‘0335'02 .
U. -p, S -
. 1,025530E-01

-1,025580€-014

%.150683E-0%

E'TTZFF?E UI"_171!’T33E'F§

7.626122E-03
3¢768332E~03
® -

8.128753E=0%
84128753E=-04

B=~10
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REAL PARTS
OF POLES

IMAG. PARTS
OF POLES

Table B.8., Model order study M=100, N=12, " .0100,
o =,0295,

TRUE AVERAGE 02
_'802000005 02 =~2.353164E-01 296592685°03
'«8.200000€-02 <«2,353151E-01 2.859268E-03
=1,6470000E=01 =2, L07453E-01 5¢518517E=0+
=1.470000E-01 <~2,607455E~01 5¢518517E=0%
=1.,880000E-01 ~1,934L55%51E-01 109404 3E-05
«1,840000E-01L ~=1,9345561E-01 1,0940463E=-05

. - ol =01 . 158E-0%
«9.25600008-01 =9,408873E-01 3¢593158E-0%

2.87L000E+Q0 2, 899635E+00 1.687968E=0%
S NTUON0EF 0T =2, B9YEIT ~ Le -U%

4s835000E+00 “-3“23535#00 " 141226 18E-0%
«b83%5000Z+00 -k.8523535+00

MAGNITUDE
OF RESIDUES

RADIAN PHASE
OF RESIDUES
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‘ Table B.9. Model order study M=100, N=20, GN-.OIOO,

% ’ cR-.OIZA.
j
y
o
O
E
-
) ‘ __TRUE AVERAGE ot
By -8,2000002-02 =8,206914E=02 6o 936625E-07
‘ ~8,200000E-02 =8,20691%E=02 6,935625E~07 gﬁ”l;o:gg?s
=1,4700005=01, =3,572390€=-01  1,036735E=03
“1,670000E-01 <=1,472350E=04 1,036735E-05
“1,8800005-01 <-1,883991E-01 1.13345LE-06
. =308800008-014__ =1, 883931E=01 1,1 33451E=08
9.260000E-0%  9.260933E=01  3,514693E=-07 i
=9,260000E-01 =9.2560933E=01 3.514693E=07 IMAG. PARIS |
—2,8740D0E20D 2, A2L3ILAES0N _ 9.613474E=0? OF POLES :
2 ~2.8740002¢00 <=2,8743L13E400 9.613474E=07
A *e8350002400 4, 8349336400  1.354101E-05 {
1 =4, 83%000Ee00. =4, 834993F¢00  4.356101E£=06 1
ot 1,0000005+00 - 9, 99847 4E-01.- 2.123205E=-05 :
C o - i . >y ) LR 4 2 R
: £,000000E+00. 9, 998171E-01"" 2,123205E~05 “”““T?fgs i
: _1,000000E¢00 1, 0013%sE+00 * 2 - OF RESID i
1,0000005¢00 1, 00130%E+00  2,0995 78E~05 :
1.0000005¢00  1,000737E+00 9.211955E-0% {1
\ 1,000000E400 _ 1,000757E¢00  9.211938E-05 i
3 ‘@
..... . 1
1. =€, 161311E-04  9.,070248E-03 i
0 5,181911E=06  3.070268E=05  LaDiAl PASE L
e =8, 186032E > - :
0. 8, 186032E-04 2,000169E-03 11
0. ©3,096731E-04  2,238498E~035 |
O 3 0N0673E=04  2,238498E=05
B-11
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APPENDTX C
THE_ADAPTIVE METHOD FOR RESONANCE ESTIMATION

The adaptive method results from the generalized schema of Volume I,
Section 2, under the following assumptions:

1. a = 1 and so = 0.

2, F, = =£— | {wl,...nandF_ =l
1 []

3. The model input is a unit sample at k = 0 (diacrete impulse).

e e et e e i - a e b W et wie

- T g TemT =

=9

The unique feature of the method ig that the filter polas, 2, may bae
adjusted to any value in the Z-plane, An adaptive technique for adjusting
the filters consists of first initializing tha filters to arbitrary values
in the Z=-plane and rapeating tha :ollow‘ng steps:

- 4 " ey
: y

e e et - ————. e L . =D

1. Find an estimate of the process trunsfer function using
the current filters in the wodel,

2, Set each filter pole to one pola of the estimated
transfer function.

o

T men-

This procedure is repeated until a, approach zero., The polas of the
process can be estimated during the course of iteration by

: ALY
S % " T+a

i

removing the need for finding the roots of a polynomial. The filter poles

are updated to éi on each iteration. When the qi approach zaero the pole

updating ceases and the method converges. At aeuch iteration, “he a, are
)

found using any of the techniques for finding a parameter vector described
in Volume I, Section 2. Perhaps the simplest method is to choose the
parameter vector as the weakest eigenvectcr nf O%1. At converr ince the

S-plane poles, @

4 can be obtained from the fi'tar poles by
)

g

- n zi
T

i

) and the A:L - Bi'
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The adaptive filtering method seems to be a very useful technique
because it uses what seems to be optimal filters, band pass filters, for
estimating pole locations. In addition it presents a measure of the error
and iteratively adapts the filters until the error is at the level where
it 1s desired.

As an example of the use of the adaptive filtering method consider
the data shown in Figure C.1. These data were numerically generated by
using the time domain computer code TWID [C.l]. The structure modeled
by TwiD was a thin cylindrical scatterer. The signal was contaminated
with noise to give a 15 dB signal-to-noise ratio. Figure C.2 shows the
resulting poles from five Monte Carlo trials.

The following statements can be made about the adaptive method after
studying it.

The adaptive method is a new method which, in many cases, pro:.ides
excellent pole estimaies under difficult conditions. The method is
unique in that a solution to a polynomial is not required to find estimates
of the process p.ies. the method, in effect, "swallows" the pc.ynomial
solver in its own iterative pole-searching scheme.

Attempts to analyze waveforms consisting of highly damped exponential
components, such as the transient responses of a sphere, have not been
successful. The adaptive method does not converge for waveforms which
display double pole characteristics, that 1s, waveforms with components
of the form t exp(st). Slight modifications to the adaptive method might
allow the analysis of such waveforms.
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Figure C.1.

Noise~contaminated offset-driven TWTD
waveform, SNR = 15 dB, The uncontam-
inated waveform is plotted under the
noisy vaveform for comparison,
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True: - .220 + J 6.800
Average: -.122 + 3 6.841

Radius: .184
e 6

Average: -.124 + j 4.774-—H~ Cr
Radius: .164

4
True: - .147 4+ J 2.874
Average: =~ .085 + j 2, F:
Radius: .082 2

True: -.082 + j .926

Average: -.087 + j .908
Radius: .016

Figure C.2. Pole estimates obtained
with the adaptive method.
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APPENDIX D

THE PENCIL-OF-FUNCTIONS METHOD

The pencil-of-functions method results from the generalized model
described in Volume I, Section 2 with the following assumptions:

l. 4y = 1l and Bo a (Q,

2, = Fi(a) - (l/l)1 (cascaded continuous integrators).

Py
This mathod is not very easy to implement on a digital computer since the
continuous=-tima integrators cannot be implemented exactly by any algorithm,
When approximate iutegrators are cascaded, as they are in the pencil-of-
functions method, large errors can be quickly accomulated and the intended
result after a numbar of intagrations destroyed,

This difficulty can be resolved by cascading discrete integrators to
obtain filters with pulse trarnsfer functions given by:

L L
Fo= Ry = () - (%)

which can be implementad nn a digital computer with no error by using
differenca equations. The variable Z is defined as

Py
Zwl -~ z
and z is the z=transform variable.

When discrete integrators are used the discrete pancil-of-functions
method results. The poles of the pulse transfer function of the process
or waveform may be estimated as

N
i 1-Zi

T TR

PN

e bl cour 1 all 5k
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? whare Z, is the 1th

{ zero of

et L i e,

zn + a Zn-l

! 1 +...+un-Q (D.1)

- In the original pencil=of=functions method the 4, were found by using

ST e AT | ]

Jain's method for constructing the parameter vector which is described in
Volume I, Section 2. With Jain's method

- Aii .1-°| l. sy Y

th

whara A ij' in this case, is the olcmnnc at the i~ row and j column of

adj O*Q. Other methods can be used :o estimate the parameter vactor.

The S=plane estimates of the polas, s, are related to thae zaeros of

. - zn(l-zi) )

One difficulty with the pencil-of=functions method is ralated to
the attepuation of the higher frequency modes of the process output by

the repaated integrations applisd to the output wavaform. It caa be
terified that an integrator is simply a first order filter whose Laplace
b transfer function has a pole at the origin in the S-plane. Such a filter

T i TR T TR I

tends to suppress the higher fraquencies present at its input. The

higher frequency suppression phenomenon is 1llustrated in Figure D.l.

3 Normally, when an exponential function is integrated repeatedly,

; componants of power of time exist in the higher integrals as well as the

3 original exponential function components. In Figure D.4 the components of

powers of time have been subtracted from the integrated waveforms in

‘ order to make the attenuation of the higher modes nore evident. The

} first waveform is a hypothetical waveform provided for analysis. The
waveforms that follow are the integrals of {ncreasing order of the first
waveform and display the increasing dominance of the fundamental mode or

mode of lowest fraquency. Further integrations yield nearly identical

waveforms. The integrated waveforms tend to become linearly dependent




waveforms. The integrated waveforms tend to become linearly denendaent at
higher model orders. The matrix OQ*Q then tends to singularity and the
method becomes unstable. The suppression phenomenon occurs in both the
discrete and continuous methods. In fact, even for very modest model
orders, the mathod can become nuwnerically ill-conditioned tc a degree that
special care must be taken to assure accurate inversion of O*q,

D-J
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APPENDIX E

METHOD OF REDUNDANT AVERAGING

The redundant averaging scheme is a preprocessing scheme that attempts
to combine redundant data (that is, more data than are necessary to determine
the parameters) in a way that avoids the bias introduced by using a least-
squares scheme to combine redundant data. The method attempts to transform
a raw wvaveform of more than 2N samples where N is the model order into a
preprocessed waveform of exactly 2N samples by averaging within the waveform.
The averaging can be doue so that the expectations of the poles of the pre-
processed waveform are equivalent to the axpectations of the poles of the
rav vaveform provided the additive noise on the raw waveform is zerc mean
and uncorrelated between sucessive samples. The preprocessed waveform may
then be processed with cuive=fitting Prony's mathod to avoid the bias of the
least-squaras procedure.

The most general description of the redundant averaging scheme can
be stated simply as
NA-I
- 3y ) k0,1, .00, 2N=1
e o Ty,

where N is the model order, xk denvtas the kCh
vaveform, and 2 denotes the kth sample of the raw waveform. In order to

limit this dascription to the essential featuras of the redundant averaging

sumple of the preprocessad

scheme, NA’ the number of averages, an’ N.. the decimation epoch, are not
explicitly definad herea. These parameters ara choosen as desired but usually
in a way that would produce & desirable preprocessing mode in some sanse.

For instance, the value for the decimation epoch might be chosen on the

basis of the maximum frequency, Wy present in thea raw waveform (if thins
information is available) and the number of averages might ba chosan so

that every sample in the raw waveform is used once the value of the

decimation epoch is set. Hencea the sampling interval, At, for the
preprocessed waveform could be obrained as

E-1
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it = N. Atr

aw
s
where N« Integer Part [——-—-].
’ o Atrnw

The number of averages, NA’ can be computed by

N

A " M- N' (2N=1)

whare M is the number of samples in the raw waveform and N is the order
desired, It should be noted that the above mathod for determining NA and
N. is not the only possible technique.

The redundant-averaging procedure is effectively two operations:

1. Apply a low-pass moving-average filter, A(z), to the raw waveform,
2. Decimate the filtered waveform with decimation epoch N..

The fransfer function of the moving-average filter is:

N
Nal N2 A
AT w2 A w2

A(z) = ¢ )

The numerator of A(r) can ba factorad into

NA
O (z-z,).
jmg &

The zeros, z,, of the numarator of A(z) have unit magnicudes and arguments,

- 27 i=-1
arg z, NA ,

for 1 = 1, ...\, NA‘ It is clear that the first factor cancels with the

denominator giving

Na
A(Z) = I (z-zi)o
im2
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Figure E-l, Z=-plane plot of zeros of

preprocessing filter for N
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Figure E-2
a) Noise free test signal from 6 poles
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r b) Noise contaminated signal and reconstructed signal using

the method of redundant averaging with parameters M=400,
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Table E.1 True poles and results of five Monte Carlo rums for the

redundant averaging example shown in Figure E.l.

REAL PARTS OF POLES

TRUE

MONTE CARLO RUNS

POLES AVER. ¢ % DEV.
1l 2 3 4 S
-.082 -.097 -.127 -.122 -.137 -.050 -.107 .033 30
-.147 -.198 -.157 -.239 -.162 -.177 -.187 .086 27
-1.83 -.129 -.103 -.227 ~.562 -.332 -.271 .185 44
IMAGINARY PARTS OF POLES
;gfgg MONTE CARLO RUNS AVER. g % DEV.
1 2 3 4 5
.926 . 957 .904 .884 .942 .936 .925 .030 ~.1
2.874 2.950 2.913 2.874 2.889 2.882 2.902 .031 1
4,835 4.721 4.899 5.006 5.065 4.803 4.899 141 1.3
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A(z) then has NA zeros which are evenly spaced around the unit circle but
the zero at z=l1 is canceled. Since there is never a zerc at z=1, the
moving-average filter can be viewad as a type of low-pass filter. A
z;plane plot of the zeros is shown in Figure E.1l.

As an example of the application of this method consider the noise-
free waveform shown in Figure E.2a. This wavaform consists of 400 data
points representing a sixth order exponential function generated with the
poles listed in Table E.l. This data was then corrupted by adding white
noise with a standard deviation, o, of 0.5. Figure E.2b shows the noise
contaminated signal. This signal has a signal to noise ratio of 15.6 dB
where the signal to noise ratio is defined as

R
S/N = 20 log -22‘;‘-5

where Rpeak is the peak amplitude of the transient signal. Five Monte
Carlo trials were run on this data using the radundant averaging method.
The modael order was selected to be 8 (two more than the known order) and
Ns and NA were chosen to be 16 and 160 respectively. Figure 3.2b shows

the reconstructed waveform obtained from one cf the Monte Carlo trials.
Note how good the f£it is considaring the signal to noise ratio was 15.6 dB.
Table E.1 lists the results of the five trials and shows tte pole averages,
standard deviations and per cent deviations. It should also be noted that
the signal to noise ratio compared tu each pole rasidue is only 6 dB.

Hence from poles with a 6 dB information content we were able to recovar
them very accurately.

The redundant averaging scheme has two difficulties or limitations
that can cause the method to be iass effective:

1., If the sampling rate in the preprocessed waveform is
sufficiently low, the higher frequency poles can be
folded, perhaps several times, about the Nyquist
frequency.
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2. The method can null modes in the preprocessed waveform

that exists in the raw waveform.

The frequency folding phenomenon introduces an ambiguity in that it
is not known how many times a particular pole has been folded about the
Nyquist frequeucy. Hence, Ns possible poles are introduced for each

extracted pole by the redundeat averaging scheme where

- LAT) preprocessed
3 (AT) raw

N

0f course, if the highest frequency mode of the waveform 1s known to be
lower in freguency than the preprocessed waveform's Nyquist frequency, the

ambiguity is resolved but, in general, this will not be the case.

The mode nulling can occur if the averaging parameters are such that
the zeros of the resulting low pass fi.ter cancel poles of the signal
itself. That is, if we define the preprocessed waveform P(z) as

N(z)
P(z) = A(z) D(z)

N(z)
resulting from the averaging process A(z) operating on the signal D(z),
then i1f A(z) and D(z) each have terms in common they can tend to cancel

each other.

E-7
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APPENDIX F

COLUMN PRONY'S METHOD

In this method the z-plane estimates of the poles are the roots of

the polynomial

2
¢

+ ul(zN) + uz(zN) +

The a, are dstermined from the system,

i
Yo YN LY

YI YN+1 e 9 &

YN-1 Yon-1 "°°

Yy2_y

YN2-n+1

YNz-l

N
ves * aN(zN) = Q

. - -
e, r'yNz
! IN2+)
. = - .

| ON=-1 | YN24N-1]

where ay is assumed to be one and {yo, Yis toeo yN2+N-l} denotes the
sequeace frr the waveform containing N24+N samples. It should also be
noted that the polynomial has N2 roots otuly N of which are 1elatel to

estimates of the true cornstituent poles of the waveform,

Column Prony's method offers 2 means of combining N2+N data points

compared to the 2N data points of the standard Prony's method. The

column Prony's method can either be used in the least-squares version or

the curve-fitting version.

If the curve-fitting version of column Prony's

method is used, the resulting parameter estimates are unbiased.

Uanfortunately the method yields N2 pole estimates only N of which are the
true poles. It appears then that column Prony's method leads to the same

problem that increasing the model order led to in the standard Prony's

method: an ambiguity in the identity of the true poles. Moreover, this

method has an additional problem: the matrix can become nearly singular
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even if the model order is lower than or equal to true order. This
phenomenon is similar to the singularity of the standard Prony's method
when the model order equals the waveform order and the highest frequency

is equal. or nearly equal to the Nyquist frequency.
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| APPENDIX G :
' i

b EVAN'S AND FISCHL'S METHOD

In Evan's and Fischl's mathod [G.l] they define a "true error"

sequence {°k’ keQ, ..., M=1} as the error betwaan the given waveform and
: the "fitted" waveform. They then proceed to define the "equation error"

? ) sequence {dk' k=0, ..., M-1}., They further proceed to define a relation .
? . between the equation error and the true error: ;
] wd |
¥ ) a= e 4
il :
g ;
¢ ]
W} where
3 ez(e, &, o ]T 1
A s2leg e ooyl é
5 ds(d, d I

1 = 0 l s e dM N y F;
g 1
| and W = A[ATA]

i ’
r, : 1
= where %
g': . ]
| ‘ —do 0 K] ? 1 i
o ’ a o ces
5 0 0 é
; . . aq g
El A- GN GN-l s 0 ;‘
0 oy |
: ’ . . |
!i . . GN-l k
% Lo 0 00 QN —
? ;
L !
E d M is the number of samples, N is the number of poles, uN-l. and the a,i
: are the coefficients of Prony's difference aquation defined in Section 2,
2 Volume I.

]
-
- 3
] G-1
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By using this relation between the two errors they describe two iterative

prncedures aimed at minimizing the "true' error criterion:
M=1 2

> % ¢

k=)

The first procedura uses
atevel vy

where T '
vagt walh wall

T
i i i]

N-l aN-z L ao

i5[a

T
g? [-yN =Y ees =N ,]

yM—Z tes -yM—N-l

1 is the iteration number, ana y, denotas the ithsampla of the response

The second procedure usas:

at =61 tug

where T T
venal™ o+t wat ™ jwal™h

L(a) = [2,(2) 2,(2) ... 2.(8)])

and
]
L (a) =
ko= [3°N-k

W(g)} d .

G=-2
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It can be shown that

W(a) =
aaN_k

T
H:F;-:_—k A(g)] - w(;)([afn_k A(g)] Ala)

~1

+ a7 [aju_k m_.)} >1 [».(9" A(g)]

and [(3/3uu_k) A(a)] 1s simply the matrix A(a) with ones replacing the a
with all other elements zero.

N=k

The following observations can be made about the method:

1. It producus optimal pole estimates in the sense that it
minimizes "true error". This means that the mean-square error between the
given waveform and the fitted waveform is minimized. These optimal pole
estimates are obtained only in the second iteration phase.

2. .ue matrix ATA must be inverted on ¢ach iteration of both the
first and second procedures. When the wave, . . has over 130 samples, A?A
becomes very large, and hence, uxpensive tu invert. Consequently, the
method is prohibitively expensive when the waveform has over 100 samples.
This method has yet to be evaluated by tests on noisy data. Nothing 1is
presently known about its convergence characteristics of its tolerance of
noisas.

The following example illustrates the optimal estimatas.
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xample

Nel, M=)
¥ * [212(vavetorm to be approximated)
c-@ln-ﬂb
Initial parameters! ao-l. al--l. Bo--g- « These are the optimal parameters,
thereforea the method should converge immediately.
«1 0
l-1
01

-1 0 -1

D A T

0 1
[z/a 1/3
1/3 2/3

-1 0 «2/3 -1/3
2/3 1/3
Wal l-1 - /3 -1/3
1/3 2/3 b
0 1 /3  2/3 i
o <3
- A
T A=f0 1
0 0
C=4
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Therefore che updated value of % is equivalent to its old value, hence the
method has converged at the optimal parameters for the second iteration

phase.

1 0
3
< weullo 1| -
3“0
0 0
+[
0 0
2
3“0 we 12/3 1/3
1/3 2/3

A
a

Ve [3/3 8/3]

0

- ‘ (3/3 5/3)

l
e

\

~2/3 =1/3]

100
1/3 =1/3
010
1/3 2/3J
1 0
110
0 1
0 -1 1
0 0
-1
z) -l
[5/3 5/3)
.1‘ -2

) (=5) = -1 ‘

shid dissnue
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APPENDIX H
CONSTRAINED PRONY's METHOD

H.l Uses of a Constrained Prony Mathod

Many times, in the application of the Prony algorithm some of the
poles are known a priori, It would be very useful if the Prony algorithm
could be constrained in such a manner that the knowledge of the known
poles is used in extracting the unknown poles. The known poles could be
poles of the driving function which are known from knowledge of the Laplace

transform of the driving function, system poles which are known from pravious

Prony analysis or other techniques, or poles introduced to model the noise.

It 1s well known that for certain data sets Prony's algorithm has
soue difficulty (n extracting the true poles that are contained in the
data., This problem is generally relatad to the noise in the data but will
not be discussed here. Any method by which the accuracy of the true polas
can be increused will be very useful.

Logic would tell one that making use of known information should
increase the accura.y of a calculation, Hence, if use is made of known
poles in the data it would seem reasonable to assume that some of the
instability in Prony's method would be alleviated. The proof of the
validity of this statement rests on the actual implementation of the
constrained Prony algorithm and the results compared for the same data
analyzed by the unconstrained mathod.

In addition to aiding in increasing the accuracy of the true poles
it might be possible to introduce random poles which will model the noiss.
In that manner, the poles that ara knovm a priori are not the poles which
we seek. The difficulty with this, 1if it should work, is that we need to
know the rank of the system so that we can introduca tke proper number of

noise polaes.
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Another asset of having a contrained Prony's method is that it can be

used to aid in deconvolution. The following discussion follows directly
from work performed in Reference [4.2].

Assume that a system is axcited by a driving function which can be
represanted in the form

M

G(t) = 3 8y
j=1

ljt
a u(t)o (Hcl)

It i0 presumed here that the driving function poles s, and the associated

residues g, ars knovm. These can be determined analytically if the ana-
lytical form of the driver is known or can be determined from a Prony's
method fit to measurement data of the driving function.

Now assume that the raesponse of the system to the driving function
G(t) 1is

M+N s, t
R(e) = 5 £, & u(e)

(4.2)
o 1

and that the impulse response of the system is

N s t
H(e) = 5 b e X

(4.3)
ka1 K

Hence, there are N system poles and residues and M poles in the driving
function, Of course, the response function R(t) can be written as the con-

volution of the driving function G(t) with the impulse response H(t). That
is,

R(t) = H(t)*G(e) , (K4)

where * denotes convolution.
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What 1is usually desired is to obtain the N system poles and residues
of (11.3). This must be done by deconvolution of the driving function
(H1l) from (H.2). 1If the r, and s, are known, the M+N values of s, contain
the M valuesg 'j’ The gj and the sj are known, then the N values of hk and

sk can be determined analytically.

It can be shown that the response function can be written in terms of
the driving function and the impulse response as

M N s, t N M g s t
R(t) = (3,1 > é‘—h:k.—')e~1 -3 (hk EF_J;-)ek . (H.5)
i=1 k1 %37™% kel J=1 %%
Hence, the response function rasidues can be defined as
N hk
r, =8 o ¢+ fori=1,M (H.6a)
I k=1 875
M g
romch S o, for 4= ML, N . (H.6b)
§=1 %%
From (H.6b) the residues of the impulse response are written as
T k=1,N
h == L 3 ' , (H.7)
k S gy 1 = MHe
o1 %37%

Thus the res’ ' i1es or amplitudes of the impulsae responsé can be obtained from
the known va. Jas ri, gj, sj’ 8’ Of course, since the M values of s, are
known and the M+N values of s, are presumed to contain the M values of s ,

i 3
then the N values of s, can be determined by inspection.

H-3
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Prony's method, however, will not necessarily give the true values
of the driving function poles in the extracted poles of the respouse
funcrion. Hence a constrained Prony's method is required so that analyti-
cal decunvolution of (H.7) cau be obtained.

Vork performed so far implements Method 1 which is described below.
It was found that this method works perfectly as long as no noise is
present in the signal. As soon as noise is introduced in the signal and
a least-squares method is used the matrix (H.17a) is corrupted with noise
which through the least-squares process also corrupts the constrained
parameter., Experiments have confirmed this observation. This suggests
that the constraining Method 1 may work well in noisy data if the curve-
fitting Prony's method is used. This has not been tested as yet.

Method 2, forcing the polynomial root solver to find certain roots,
has also not been tested. This is because if the coefficients are all
corrupted by noise through the least-squares procedure then sgubtracting
any given poles out of the polynomial will force the remaining poles to
carry the burden of all the noise.

H.2 Method 1

In the implementation of Prony's method, an Nth order polynomial is
solved for itas roots. The order of the polynomial, N, is the number of
poles being sought in the transient data. If the coefficients of the
polynomial are denoted as a then the polynomial can be expressed as per
Reference H.l as

1 2 N
2, + alZ + azz + cee * aNZ =0 (H.8)
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Zi = a (H.9)

with s, being the poles sought, and At being the time step size umed in the
analysis.

If the value of one or more of the poles is known = thac is, we know
some of the zi - then the Z, can be substituted into (H.B). For exampla,

i
if s, or zi is known, then (k.B) can be written as
a. + a,2 +az2+ +aZN-O (H10)
0 171 271 ter N1 )

The N+1 polynomial coefficients o are solved for in Prony's method by
solution of the difference equation

N-1

zo Gp IP+K - -] » k"O,l,...,Y-l ) Y-M-N . (Hu)
P-

N+K

! The IP+K and IN+K are the samples of the transient signal being analyzed and
o M is the total number of samples being used. The value of M must be at least
: equal to 2N to give N sets of equations in the N unknowns ap. Howaver, if

| » the value of a pole is known, then one of the N equations can be equation

H.10 and N-1 equations of the form of H.ll can be written.

If L poles are known a priori, the L equations of the form of (H,10)

can be written as

q b
" pz-o 4, fym = fp kel e L (H.12)
HeS
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a

inverted and solved.

& then we sulve the equation

AB = C

where A is a square matrix defined as

1 z,
1 z,
1 z
A = L
I, I,
I, I,
| INein Iy

o ensdo £ ML L R FENA N P AR

IN-Lel

N.
Z I = T , k=0,1,...,y=1 , y=M-N-L
o P p+K K+N

L IS IN

oo IZN-L-Z

BN CERLL . TET Y I Nt s e

|
|

, % and y=M-N-L equations can be written in the form of (H.11)
|

(H.13)

Hence there are still y=M-N total equations to solve for the N values of a
however the gystem is constrained by the knowledge of the location of L poles.
As is usually done in Prony's method, if M=2N then the set of equations is

If M>2N then a pseudo-inverse procedure is used.

- Using the matrix notation of Reference H.l, if M=2N and L poles are known,

(H.14)

(H.15a)
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and B and C are vectors defined as

™~

w
n

2
Lol o
~e
v 2z

. (H.15b) (H.15b)

] oo
=z

|
[
=z

N+l

IH--

2N=1-L

If M>2N and L poles are known, then the solution takes on a pseudo-inverse
or least-squares form as

ATaB = aTg (1.16)

Where AT is the transpose of the matrix A and A is now a rectanguldr matrix
of the form

= 2 N-1
1 Z, 22 vee 20
2 N-1
1 Zz Zz (XX zz
2 N-1
Z “se (H.l?ﬂ.)
A . 2z 2
Iy I 1, N
1, I, I, e Iy
IMaNalel  IMeNoL oo Iyape2
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B ]
o B = a (H.17b) . (H.17¢)
;' . 2 . } j
o . N i
n
b N1 IN
E’J‘i . ou—
y :
IgeleL |
; Consider the simple example of a two pole system

: s t s, t
¢ E(t) = 2¢ 1 + 3a
if ; where s, = 0 and 8, * ~4. Assume that .1 is known, thus giving Z:L = 1.0,
? ’ Also, let f(t) be sampled at At = 0.2 seconds, giving a data set as
J
El
5% t £(t)
:
§ 0 1‘.0 =5
!1 0.2 I, = 3,3480
] 1
E 0.4 I, = 2.6057
3
? 0.6 I, = 2.2722
# 0.8 1, = 2.1223
i Using the constrained Prony's method in the square system form of Equation
3 (H.14) and (H.15) yields
' H-8
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1 1 %y 1
%' Io Il ay I2
h or
| 1 1 a4 1
5 3.3480 &y - 2.6057
' The golution of this set of equations givas a, = 1.4493 and % " 0.4493 so

that the polynomial can be written as

22 - 1.4493 2 + 0,4493 = 0 .
]
The roots of this polynomial are Z1 = 1.0 and Z2 w 0,4493, giving poles of
s, " 0.0 and 5, " 4.0003. The error in s, is due to truncation error. Note
; that the constrained pole was raturned exactly.
Lo
b H.3 Method 2

Another approach which can be used to constrain Prony's method to use
’ information about known poles is the modification of the polynomial root
finding routine MULLER. Once the unconstrained Prony's method calculates
the coefficients of the polynomial (H.8) and if some of the roots of the
polynomial are known a priori, then the locations of those roots can be
¢ passed to MULLER and it will not have to search for those roots. Since the
root finding routine is very time consuming, the knowledge of the Location
of any of the roots will presumably save computation time.

E' ' A possible flaw with this approach is that MULLER is forced to pre-
sume roots of the polynomial when those exact roots may not be contained in
the polynomial. That is, if the polynomial has not been constrained to
contain the known roots, as per Section H.2, then the known roots will

SR LS e P o AT Dt T et bt e




not necessarily be contained in it. Forcing an unconstrained polynomial
to have cartain roots could grossly perturb the location of the other roots
being sought.

T RSN Y TS T LT IR T A PR
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R H.4 Method 3 ¢
i ! 1

i?' The obvious solution to the flaw presented in Section H.3 is to use
k'f both the methods of H.2 and H.3 simultaneously. That is, the polynomial ,
;ﬁ is constrained to contain the known poles as outlined in Section H.2. Then .j
9’ the polynomial root finding routine MULLER can be modified to extract the :
! known roots from the polynomial before it begins its search for the unknown ;
roots. ' ;
,;'i
It is felt that this approach will give the hest accuracy and will b
spead up the calculatione since the order of the polynomial is eftectivuiy f
raduced. ;
q
1
-
2
|
!
i
; ]
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APPENDIX I

REVERSING THE WAVEFORM IN TIME TO ELIMINATE
EXTRANEOQUS RESONANCES

Reverasing the waveform in time depends on the statistical pruperties
of the noise which do not change when the waveform is reversed. The poles
that result from the noise, therefors, are not alterad by reversal in time
vwhile the true poles are negatad or flipped through the origin.

If the noise level is high the noise poles only approximataely remain
the same under time reversal and the true polas only approximately reflact
through the origin. If time reversal is attempted for curve~fitting Prony's
nethod it is found that all poles £1ip precisely. Therafore, thias mathod
is not effective for curve-fitting Prony's method.

(Curve=-fitting Prony's method uses the solution to the inhomogenaous system
QX=q, in the notation of Volume I, whera Q is a square matrix.)

The waveform of Figure I.l wam used in a numerical example of the time~
raversal method. Least-squares Prony's method was applied to the waveform.
Estimates at the S-Plane poles were found using the inhomogenaous solution
which is defined in Volume I, Section 2 as

% o= @7 Q.

The waveform consists of 100 samples and was corrupted with uncorrelated,
Gaussian-distributed noise with a standard deviation of 0.1, Figure I.2
displays the poles obtained from the forward and reversed waveforms. The
dimensions of the (NXn)-dimensional matrix Q in this example are M=76
and r*24, The estimates of the true poles are quite accurate., Figure I.3
displays the poles obtained for the gsame waveform but different matrix
{imensions. The matrix dimensions are M=60 and n=40. In this case, the
axtraneous poles dc not all remain in tha left-half plane which is

attributed to using an overly square matrix.
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If the matrix is too "thin", of M/n >>1, the cstimates of the true
poles becoma inaccurate, If the matrix is too "fat", or M/n =« 1, the
oxtraneovs poleés do not all remain in the left-half plane, The nmatrix
shape where M/n = 3 appears to ba the best shape for good estimates and
keaaping the extraneous poles in tha left-half plana.
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Waveform used in the numerical example.

Figure I-1.
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Figure I-2 Effect of reversing the waveform.
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Therefore, it appears that i1f we choose M/n 3 3, then time
reversal can be used to distinguish between the true poles and the

extraneous poles in relatively high noise levels.

The above two examples show that there is a trend for the
noise poles in the least-squares Prony's method to occupy a higher
frequency portion of the S-plane and to be highly damped. This trend
was studied by letting the least-squares Prony's method operate on a
waveform consisting of only Gaussian-distributed uncorrelated noise =
no signal. The poles resulting from this example are highly damped and
evenly distributed in the z-plane approximately around a circle within
the unit circle.

This behavior can be explained by the fact that the polynomial

coefficients, except a, which is set to one, all tend to zero for the

N
least-squares method operating on uncorrelated noise, The polynomial
then tends toward zN = ¢ where ¢ tends to zero. The roots of tuis

polynomial, 25 have muagnitudes
1/N
2] = lel

and arguments

o 8rg € + 2m(i-1)

arg z, N

for i = 1’ O'.’ Nl

It then follows that the poles should be highly damped, since
|zi| + 0 1f |e| + 0, and that the poles are evenly distributed about the
z-plane. However, for curve-fitting Prony's method the Gy i=0, ...,
N=1 do not ten! to zero and indeed this phenomenon is not observed in

tests using cuive-fitting Prony's method on all noise.
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This behavior of the noise poles in least-squares Prony seems to

remain approximataly the same even if the waveform is not entirely noise.

The trand that 1s seen is that the noise poles occupy the higher frequencies,
are highly damped and evenly distributed between the higher frequencies;
while the true poles are approximately at their uncorrupted locations

and occupy the lower frequencies. That is, it appears as though the noise
poles are '"crowded" away from the lower frequencies or, perhaps more
accurately, the lower frequency noise poles become lower frequency signal

poles when the waveform is no longer entirely noise.
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